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A stable  n u m e r i c a l  method of solving the inverse  Stefan type of heat-conduct ion p rob lem is 
p roposed .  An applied the rmophys ica l  p rob lem is then examined --  that of calculat ing the 
boundary conditions on the cooled su r face  of a solidifying continuous c i r cu la r  cast ing under  
p rac t i ca l ly  s t eady - s t a t e  t he rm a l  condit ions.  The calcula ted r e su l t s  a re  compa red  with ex-  
pe r imen ta l  data.  

The quality of a continuous cas t ing is l a rge ly  de te rmined  by the profi le  of the cavity and its posit ion 
in the mold .  The cavi ty  profi le  in turn depends on the boundary conditions at  the sur face  of the cast ing,  
i . e . ,  on the conditions of heat  t r a n s f e r  in the mold and the zone of secondary  cooling. The solution of the 
p rob lem inverse  to the p rob lem of sol idif icat ion (in which the cavity prof i le ,  opt imized on the basis  of some 
speci f ic  c r i t e r ion ,  by r e f e r ence  to theore t ica l  o r  p rac t i ca l  data, is given in advance) enables us to find the 
cor responding  boundary conditions, i . e . ,  the opt imum conditions for  cooling the cas t ing.  In pr inciple  we 
may  thus de te rmine  the const ruct ional  p a r a m e t e r s  of the mold giving the bes t  r e su l t s  ( f rom the point of 
view of any speci f ic  r equ i r emen t s  imposed  upon the cast ings)  in advance .  The solution of the inverse  
p rob lem,  f u r t h e r m o r e ,  enables  us to solve speci f ic  (Stefan-type) boundary p rob lems  by n u m e r i c a l m e t h o d s ,  
using the boundary conditions found in the manner  indicated.  

The re  have a l ready  been s e v e r a l  a t tempts  a t  formula t ing  inverse  heat-conduct ion p rob lems  (mainly 
t ransient)  with due allowance fo r  the phase t ransi t ion:  an approx imate  analyt ical  solution for  inverse  one-  
d imensional  p rob lems  was given in [1-4], and a two-dimens iona l  s t eady- s t a t e  p rob lem was cons idered  in 
[5], subject  to ce r ta in  spec i f ic  a s sumpt ions .  Considerable  advances  were  made in [6, 7], in which e f fec-  
tive numer i ca l  methods were  p roposed  for  solving inverse  one-d imens iona l  p rob lems  of the Stefan-type 
for  the l inear  and quas i l inear  heat -conduct ion equat ions.  

The inverse  p rob lem under  considera t ion  a r i s e s  when solving the s t eady-s t a t e  Stefan p rob lem r e -  
garding the sol idif icat ion of a cyl indr ica l  cast ing,  and a lso  when studying other  technological  p r o c e s s e s :  
the welding of m e t a l s ,  mel t ing  p r o c e s s e s  (for example ,  in bath- type furnaces) ,  and so on. 

The s t eady - s t a t e  p resen ta t ion  is mos t  appropr ia t e  in our own case ,  since semicont inuous and con- 
tinuous cas t ing a r e  main ly  s t eady- s t a t e  p r o c e s s e s :  even for  semicont inuous cast ing (with a cycle of 25-30 
rain), under  p rac t i ca l  conditions more  than 90~c of the me ta l  is cas t  at  a constant  velocity,  i . e . ,  in a p r a c -  
t ical ly  s t eady- s t a t e  m a n n e r .  

In formula t ing  the boundary p rob lem we make the usual  assumpt ions :  heat  t r a n s f e r  in both phases  
is effected by the conduction mechan i sm;  there  is no supercool ing of the mel t .  The s t eady-s t a t e  a x i s y m -  
m e t r i c a l  t e m p e r a t u r e  field in a continuous cyl indr ical  cas t ing G = {0 -< r -< R, 0 - z - H} and the posit ion 
of the sol idif icat ion f ront  a re  defined on the bas is  of the following conditions, using a s y s t e m  of s ta t ionary  
coordinates  a t tached to the mold: 
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OT =r-~ 0 (E~r OT ) ' ~ 02T (r, z)EG~, i = 1 ,  2, 
c~Tiv Oz ' Or ~ ~- ~ Oz - - - U '  

Gi= { O < r < ~ ( z ) ,  O<z .~H} ,  O 2 = { ~ ( z ) < r < R ,  0 < z ~ H } ,  

Tlz= o = T ~ (r), TIZ=H = T i (r), 0 .< r.< R, 

OT . . . .  q(z)), 
Or r=O = O, Tit=. R = Tsu i (z) ( o n  ) OT - "~ Or ~ = R  O < z < H ,  

Tl~=~(z ) = Tso 1 0 < z < H ,  

( t ( o, o, ,i or or o~ I _ ~ 

= 9y~v--~-z , 0 < z-<H. 

(i) 

(2) 

(3) 

(4) 

Condition (4) at  the solidification front is obtained f rom the well-known Stefan thermal-balance  r e -  
lationship, on the assumption of a unique representa t ion  of the front in the form 

r=~(z) ,  0-<z.<H, max!~!<c~. 

Es t imates  of the thermal  fluxes in the direct ion of the z and r axes show that in a number  of cases 
(for example,  that of a continuous steel  casting [8-10], and also a copper casting up to a specific thickness 
of the c rus t  [5]) the axial flux is negligibly smal l  by compar ison with the radial  component,  and need not be 
taken into account.  The t e rm ?'i (D2T/0z2) in Eq. (1) may then be neglected, as a resu l t  of which we obtain 
an equation of the parabolic  type (v = const  > 0, c i, Ti > 0) 

c)T : r - 1  a (~.~r O~r ) (5) 
c~7~v Oz Or ' 

in which z plays the par t  of the time t. The condition based on Eq. (21) 

TIz=0 = T~ O-<r.<.R (6) 

becomes the initial condition (the condition at z = H is not needed). 

In the region of the liquid phase G 1 = {0 < r < ~ (z), 0 < z -< H}, neglecting overheating of the melt ,  
we may consider  that T ( r ,  z) --- Tsol,  i . e . ,  Eq.  (5) is only applicable to the solid phase (one-phase prob-  
lem), G 2 ={4(z)  < r < R ,  0<  z - < H } .  

As one of the boundary conditions we use Eq. (3). The other boundary condition is also formulated 
at r = ~ (z), and represen ts  a d i rec t  consequence of (4) if we know the profile of the cavity r = ~ (z): 

~ aT I a~ 
~ - -  = 9 7 ] v -  (7) 

Or ]r~(z) " Oz 

The inverse Stefan problem lies in finding the boundary condition T[ r =R (or ?~ (0T/0r) [r =R and 
T (r, z) in G 2 f rom the conditions (5)-(7) and (3). We note that at the boundary r = } (z) of the region G2 two 
conditions (3) and (7) (Cauchy conditions) are  specified, while at the o t h e r b o u n d a r y - ( r =  R) the values of 
Tsur  are  unknowns. For  an equation of the parabolic type, problems incorporat ing Cauchy data belong to 
the ca tegory  of " incorrec t"  (A. N. Tikhonov) problems;  in par t icular ,  instability of the solution with r e -  
spect  to perturbations of the conditions (3) and (7) may occur .  The problem may be regular ized,  for  ex- 
ample,  by separat ing out the permiss ib le  set of solutions [11, 12]. This approach was employed in [5] to 
obtain an approximate analytical  solution. 

Aaother  approach to the approximate solution of inverse problems of the Stefan-type for parabolic 
equations was establ ished in [6, 7]. This lay in reducing the original  problem to an equivalent ex t remal  
problem.  The method enables us to find a smooth solution to the inverse Stefan-type of problem (when 
this exists),  and to const ruct  smooth quasi-solut ions in the general  case .  

The inverse problem (5)-(7), (3) is replaced by the problem of minimizing the functional 

H R 

o ~(z) 
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Fig. 1. Profile of the cavity in a continuous copper casting 180 mm 
in diameter, subject to the calculated (designed) technological casting 
conditions: 0', 1, 2 . . . . .  9 are the computing intervals over the 
height of the cavity. 

Fig. 2. Results of a numerical calculation of the boundary conditions 
on the surface of a casting: 1) q; 2) Tsur; 3) q distribution accord- 
ing to experimental data [14]. 

def ined  in  t e r m s  of the so lu t ions  T = T (r ,  z), T = T (r ,  z) of the a u x i l i a r y  bounda ry  p r o b l e m s  of Eq .  (5) in 
a r e g i o n  G 2 with a movab le  bounda ry  ~ (z). As b o u n d a r y  eonditio=n a t  r = ~ (z) we r e s p e c t i v e l y  use  (3) and 
(7) for  T and T; a t  r = R the b o u n d a r y  condi t ions  a r e  TI  r =R = T I r =R = V (z) where  V (z) is a c e r t a i n  su f -  
f i c i en t ly  smooth  funct ion:  

of r-~ a L af'~ 
c2v2v - - ~  = T ~ ^ 2 r - a r , ) ,  (r' z) E G2, 

(I r) T[r=~(z) = Tsol 0 < z . ~ H ,  

7"lr=a = V (z), 0 < z ~ H, 

Tk=o = T ~ (r), ~ (0) .< r .< R, 

. o f  
(i /r)  { ~o_ ~ ~=~(,) = PT,V - ~ z '  0 < z<H, 

I TIr=R = V(z), O<z<I-1, 
[ ~!~=o T ~ (r), ~ (0) ~ .  r - ~  R. 

In o r d e r  to m i n i m i z e  the func t iona l  g (V) in the s e t  

Qc ={V(z)EW~[O, H], IIVjt~ < c ,  v(0) = T~ C = const > o, 

we m a y  use  the i t e r a t i ve  g r a d i e n t  method .  Speci fy ing the i n i t i a l  a p p r o x i m a t i o n  V (~ ~ QC, we f ind the nex t  
a p p r o x i m a t i o n s  by u s i n g  the equat ion:  

VS+l = Poc {Vs - -  ~s grad J (VS)}, s = O, 1, . . .  , (9) 
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where PQc  is the opera tor  for  project ion on the set  QC; a s  > 0 is the step of the gradient  method; grad 

J (VS) is the gradient  of the functional J (V) in the s - th  i terat ion.  

The following relat ionship is then valid [6, 7]: 

' a ~ "  , a ~  
gradS(V) =a (-07-- * & - - )  ~=n' a = L = ( v Q ? : )  - ~ ,  (IO) 

where ,I, = ~I, ( r ,  z ) ,  ~, = ,I, ( r ,  z )  are the solutions of the boundary problems conjugate to the problems IT, 

IIT: 

O~ a r t  a (r_ ~ ~g) _ 2 (T - -  T), (r, z) E G~, 
az - a ~ ? r  - -  a - - 3 U -  

I ~b=R =0, 0 < z<H, 
t Tl.=n = 0 ,  ~(S)<r-~.R, 

a~ a=~ a 
az = a--O~r= - -  a T (r-l~) -? 2 (-T - -  7~, (r, z) E C=, I @) ( 

II~ {l a--o~ - -  \ar-* + 

] %=~=0,  0<z<H,  

In accordance  with (9) and (105, the determinat ion of V s +t (z) (s = 0, 1 . . . .  ) invotves the solution of 
the boundary problems IT, IIT for  V (z) -- VS (z), with subsequent solution of the conjugate problems I O, 
II ~ in which T and ~ are  the solutions of problems IT, IIT for V (z) = V s (z). The gradient -descent  i teration 
p rocess  is regarded  as completed when V s (z) and VS +~ (z) coincide to a specified accuracy .  As the 
e lement  yielding the minimum J (V) in QC, we then take V s +~ 

We call the following pair  of functions the quasi-solut ion to the inverse Cauchy problem (55-(7), (35 
in the set  QC 

{ r g  vc}, 

where V C 6 QC gives a minimum J (V) in QC; T~ is a l inear combination of the solutions T, ~ of the prob- 
lems IT, I IT  corresponding to the function VC (z): 

Tc ~ = v-T + (1 - -~ )~ ,  0 < ! * <  1. 

The value of the numer ica l  pa rame te r  p is chosen f rom the condition 

-- Tsolr]L,[O, n] 
~ '( a ,  a ,  )' ,5 

il lr=~(,)-- Tsol{k, t0, Hj + Or Or r=~(,~ L=Eo, m 

The quasi-solut ion may be defined in any set  QC, C > O. If the input data of the inverse problem are 
sufficiently smooth and its solution {T (r, z), Tsu r (z)} exists ,  it follows that a quasi-solut inn {T~,  V C } 

exists in the set  QC' within the range 0 < C < C* (C* = inf lITsurllW~ = [ITsu r minli), and that it is m o r e -  
(Tsur) 

over  the only one. As C ~ C* We find that {TP_, V C } converges to the solution of the inverse problem 
{T, Tsur}  [7]. The stabili ty of the quasi-solu~tions relative to smooth perturbations of all the input data 
was also establ ished in [7]. In o rde r  to const ruct  smooth quasi-solut ions for  the case of input data pe r -  
turbed in L 2, p re l iminary  smoothing of the perturbations must  be ca r r i ed  out [7]. 

For  a numer ica l  solution of the problem under considerat ion it is convenient to make a substitution 
to "straighten" the front  [13]: 

, y - -  r - - ~ ( z )  , z ' = z ,  
R -- ~ (z) 

so convert ing the region G2 = {} (z) <- r <_ R, 0 <_ z - H} into a rectangle  of fixed width H = {0 --- y -< 1, 
0 - z <- H}.  Into R we then introduce the network ~ = wh x wr, where ~h = {Y0 = 0, Yi . . . . .  Yi = Yi-1 
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+ h . . . . .  YN = 1, h = l / N }  is the y network and w~ = {z 0 = 0, z 1 . . . . .  zj = zj_ t + Tj, z n = H} is a non- 
uniform z network.  

The problem of finding the quasi-solut ion {TcP, V C }is replaced by that of finding a function defined 

in ~, ~'T, namely,  the network function {(T~)i], (Vc) j }. For  the numer ica l  solution of the boundary prob-  

lems I T, I IT,  I~, I I ~  (written in variables  y, z) we here use the monotonic difference schemes of [15]. 

Making use of the a lgor i thm just  descr ibed,  we ca r r i ed  out some calculations in the BESM-6 computer  
for  severa l  tens of M1 copper  castings produced in a copper mold 176-185 mm in d iameter  by the semi -  
continuous method. We judged the accuracy  of the solution f rom the values of the functional J ,  and also 
f rom the mean square deviations cr of the calculated tempera tures  at the solidification front f rom the 
specified Tso l- 

In setting out the input data for  the major i ty  of experimental  cavities,  the profile (and hence the der i -  
vative d~/dz) was specified in the following way: in the upper region we used p iecewise- l inear  interpola-  
tion; in the lower region we approximated the cavity by a parabola (using the method of least  squares) .  
Here we considered only the monotonic approximations of the cavity profile (de/dz -< 05. Calculations 
showed that this method of represent ing  the cavity profile ensured reliable resu l t s .  

The foregoing algori thm enables us to r e s to re  boundary conditions of both the f i r s t  and second kinds. 
The resul ts  of the calculations show that boundary conditions of the f i r s t  kind may be re s to red  ( reconst i -  
tuted) far  more  accura te ly  and stably (relative to the original  approximation and method of specifying the 
cavity profile) than those in which the thermal  flux q is defined ( i . e . ,  conditions of the second kind). The 
flux is in this case determined f rom the solution for  the tempera ture  field [as the derivative ~ (~T/~r) I r=R]. 

By way of example,  Fig.  1 shows the profile of the cavity in a copper cast ing of radius R = 90 mm 
for  v = 10 m/h, obtained by flooding the cast ing with lead; Fig.  2 shows the resul ts  of a numer ica l  calcula-  
tion for  q and Tsu r .  Figure  2 also shows the exper imental  data relat ing to the q distribution over  the height 
of the mold under the cast ing conditions specified (these data were taken f rom [1415. In this calculation the 
following initial data were taken: Tsol  = 1083 ~ c 2 = 418.68 J / k g .  deg, T2 = 8700, 71 = 8300 kg/m3; T2 
= 350 W / m  �9 deg; p = 205 kJ /kg .  The tempera ture  of the liquid phase was taken as constant and equal to 

Tsol- 

An analysis  of the resul ts  shows that, within that par t  of the cast ing preceding the c r o s s - s e c t i o n  in 
which the rat io of the thickness of the solidified c rus t  ~ to the radius of the casting exceeds 0.4,  the ex- 
per imental  data agree reasonably well with calculation (the difference is no g rea t e r  than 15%5, i . e . ,  the 
axial flux may validly be neglected.  In the present  example this condition is valid along the whole length 
of the casting,  up to the sixth interval inclusively (~ = 0.036 m), i . e . ,  a distance of a lmost  2/3 the depth 
of the cavity.  In this region the problem may be regarded  as one-dimensional .  As the c rus t  grows fur ther ,  
the influence of the axial flow of heat becomes rapidly g rea te r ,  in accordance  with the situation a l ready en- 
countered in [8, 14], and the one-dimensional  model is no longer applicable.  Clearly,  as the thermal  con- 
ductivity of the metal  diminishes,  the axial flow of heat does likewise, and the range of applicability of the 
one-dimensional  model expands. In this r e spec t  the case of a copper casting under considerat ion is the 
least  favorable.  

The peak of the q curve {Fig. 25 in the second interval  indicates that a gas gap has developed at this 
point between the casting and the mold wall, causing a sharp fall in q. The subsequent course of the curve 
ref lects  the influence of the changing gap and contact between the casting and the mold. 

The proposed numer ica l  solution of the inverse problem may be used direct ly  in pract ical  calcula-  
tions, and also in specifying the neces sa ry  boundary conditions and obtaining initial approximations for the 
solution of d i rec t  problems of the Stefan type by numer ica l  methods.  

NOTATION 

T, density; p, heat of solidification; c, specific heat; X, thermal conductivity; v, rate of pulling 
the solidifying material (ingot, casting); H, length of the working (computed) part of the casting; Tsur(~ 
q (mW/m2), temperature and thermal flux on the surface of the casting respectively. 
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